Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling.
نویسندگان
چکیده
Overconsumption of high-fat diet (HFD) and sugar-sweetened beverages are risk factors for developing obesity, insulin resistance, and fatty liver disease. Here we have dissected mechanisms underlying this association using mice fed either chow or HFD with or without fructose- or glucose-supplemented water. In chow-fed mice, there was no major physiological difference between fructose and glucose supplementation. On the other hand, mice on HFD supplemented with fructose developed more pronounced obesity, glucose intolerance, and hepatomegaly as compared to glucose-supplemented HFD mice, despite similar caloric intake. Fructose and glucose supplementation also had distinct effects on expression of the lipogenic transcription factors ChREBP and SREBP1c. While both sugars increased ChREBP-β, fructose supplementation uniquely increased SREBP1c and downstream fatty acid synthesis genes, resulting in reduced liver insulin signaling. In contrast, glucose enhanced total ChREBP expression and triglyceride synthesis but was associated with improved hepatic insulin signaling. Metabolomic and RNA sequence analysis confirmed dichotomous effects of fructose and glucose supplementation on liver metabolism in spite of inducing similar hepatic lipid accumulation. Ketohexokinase, the first enzyme of fructose metabolism, was increased in fructose-fed mice and in obese humans with steatohepatitis. Knockdown of ketohexokinase in liver improved hepatic steatosis and glucose tolerance in fructose-supplemented mice. Thus, fructose is a component of dietary sugar that is distinctively associated with poor metabolic outcomes, whereas increased glucose intake may be protective.
منابع مشابه
ChREBP regulates fructose-induced glucose production independently of insulin signaling.
Obese, insulin-resistant states are characterized by a paradoxical pathogenic condition in which the liver appears to be selectively insulin resistant. Specifically, insulin fails to suppress glucose production, yet successfully stimulates de novo lipogenesis. The mechanisms underlying this dysregulation remain controversial. Here, we hypothesized that carbohydrate-responsive element-binding pr...
متن کاملتغییر بیان ژن SHIP2 (SH2 domain containing inositol 5-phosphatase) با استفاده از سیستم رتروویروس در سلول های کبدی HepG2
Introduction: Dyslypydmy is one of the risk factors of cardiovascular disease in diabetics. Dyslypydmy is diagnosed by increasing in plasma triglyceride density, decreasing HDL Cholesterol, and increasing LDL especially small LDL. Several evidences from human and animal studies indicate that the role of insulin resistance is a major cause of hypertrigly ceridemia in diabetics and people with me...
متن کاملLXRα Regulates Hepatic ChREBPα Activity and Lipogenesis upon Glucose, but Not Fructose Feeding in Mice
Liver X receptors (LXRα/β) and carbohydrate response element-binding proteins (ChREBPα/β) are key players in the transcriptional control of hepatic de novo lipogenesis. LXRα/β double knockout (LXRα-/-/β-/-) mice have reduced feeding-induced nuclear O-linked N-acetylglucosamine (O-GlcNAc) signaling, ChREBPα activity, and lipogenic gene expression in livers, suggesting important roles for LXRs in...
متن کاملEffect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men.
High-fructose diet stimulates hepatic de novo lipogenesis (DNL) and causes hypertriglyceridemia and insulin resistance in rodents. Fructose-induced insulin resistance may be secondary to alterations of lipid metabolism. In contrast, fish oil supplementation decreases triglycerides and may improve insulin resistance. Therefore, we studied the effect of high-fructose diet and fish oil on DNL and ...
متن کاملGLP-1 receptor agonism ameliorates hepatic VLDL overproduction and de novo lipogenesis in insulin resistance
BACKGROUND/OBJECTIVES Fasting dyslipidemia is commonly observed in insulin resistant states and mechanistically linked to hepatic overproduction of very low density lipoprotein (VLDL). Recently, the incretin hormone glucagon-like peptide-1 (GLP-1) has been implicated in ameliorating dyslipidemia associated with insulin resistance and reducing hepatic lipid stores. Given that hepatic VLDL produc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 127 11 شماره
صفحات -
تاریخ انتشار 2017